COME DIFENDERCI DAI MICRORGANISMI PATOGENI?

- 1. Le malattie e i microrganismi patogeni
 - 2. Il sistema immunitario
- 3. Contrastare i microrganismi e le malattie
 - 4. La vaccinazione

Spesso le malattie sono causate da microrganismi patogeni.

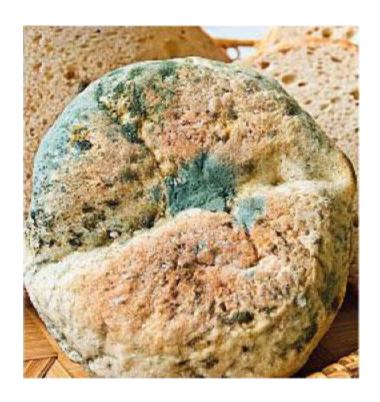
	che cosa sono	come agiscono	
virus	molecole di acido nucleico contenute in un involucro di proteine	quando un virus entra in una cellula viva si riproduce più volte, sfruttando le strutture e i processi chimici della cellula, poi la distrugge: in questo modo altri virus passano nelle cellule vicine e diffondono l'infezione	
batteri	unicellulari procarioti, talvolta autotrofi (capaci cioè di fare la fotosintesi, come i vegetali) ma per lo più eterotrofi	possono essere parassiti di piante e animali e producono sostanze velenose, le tossine: ne bastano piccolissime quantità per danneggiare in modo grave i nostri tessuti	
protozoi	unicellulari eucarioti del regno protisti, molto comuni nei corsi d'acqua	possono essere parassiti, come il <i>plasmodio</i> che vive nel corpo delle zanzare; se con la puntura si trasmette all'uomo, provoca gravi lesioni ai globuli rossi (la <i>malattia</i> chiamata malaria)	
funghi	unicellulari eucarioti come lieviti e muffe	talvolta si nutrono delle sostanze che restano tra le pieghe della nostra pelle, provocando malattie chiamate <i>micosi</i> (da <i>míkes</i> che in greco significa «fungo»)	

I microrganismi per lo più sono innocui, ma alcuni sono patogeni, cioè possono infettare il nostro organismo provocando malattie.

Il nostro sistema immunitario sa riconoscere e distruggere moltissimi patogeni.

I batteri della flora intestinale ci proteggono contrastando altri batteri patogeni.

Le malattie possono essere endemiche oppure epidemiche.



Malattie endemiche (come la varicella e la scarlattina): sono sempre presenti in una data area geografica, ma colpiscono poche persone.

Malattie epidemiche (come l'influenza): si diffondono in poco tempo e colpiscono moltissime persone; si possono prevenire con la vaccinazione.

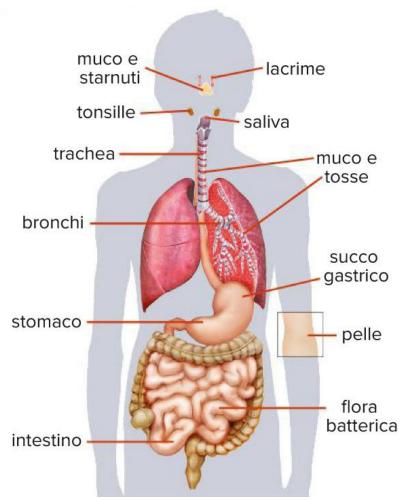
una bambina affetta dalla **varicella**

I microrganismi sono presenti ovunque.

Per verificarlo, basta raccogliere un po' di **polvere** e spargerla su una fetta di **pane bagnato**.

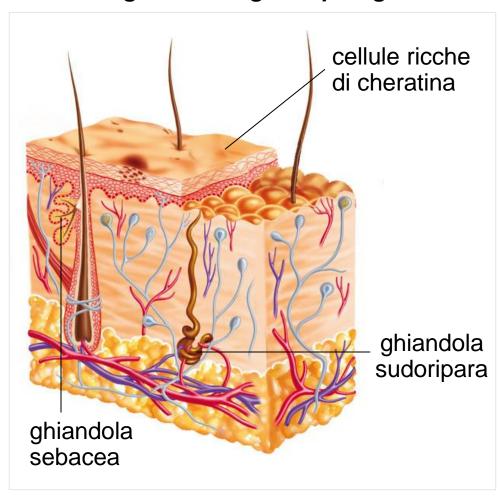
Osservando il pane per qualche giorno, vedrai che i microrganismi presenti nella polvere si moltiplicheranno, formando colonie che gradualmente ricopriranno tutto il pane.

Non tutti i microrganismi però sono patogeni: al contrario, molti sono utili!

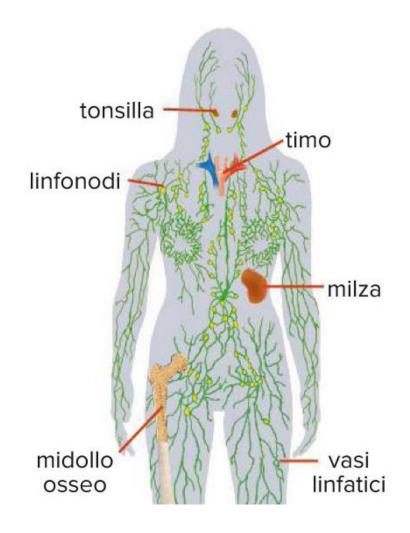


- digeriamo il cibo grazie ai batteri della flora intestinale, che vivono in simbiosi con noi
- grazie ad altri batteri produciamo l'aceto e il formaggio
- i **lieviti** sono **funghi** microscopici che sfruttiamo per fare **pane** e **vino**
- esistono anche microrganismi capaci di decomporre i rifiuti

2. Il sistema immunitario - Difese di barriera


Il nostro corpo usa diverse barriere come difesa contro l'ingresso dei germi patogeni.

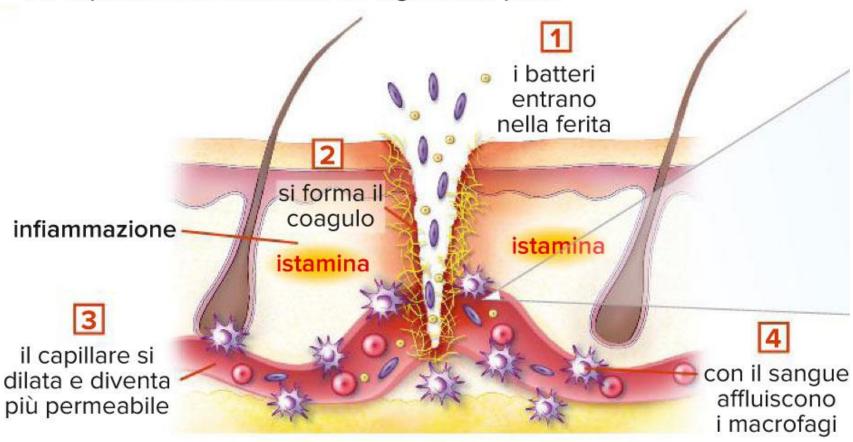
Queste difese aspecifiche (cioè non specifiche) ci proteggono da tutte le sostanze estranee indistintamente.


2. Il sistema immunitario - Difese di barriera

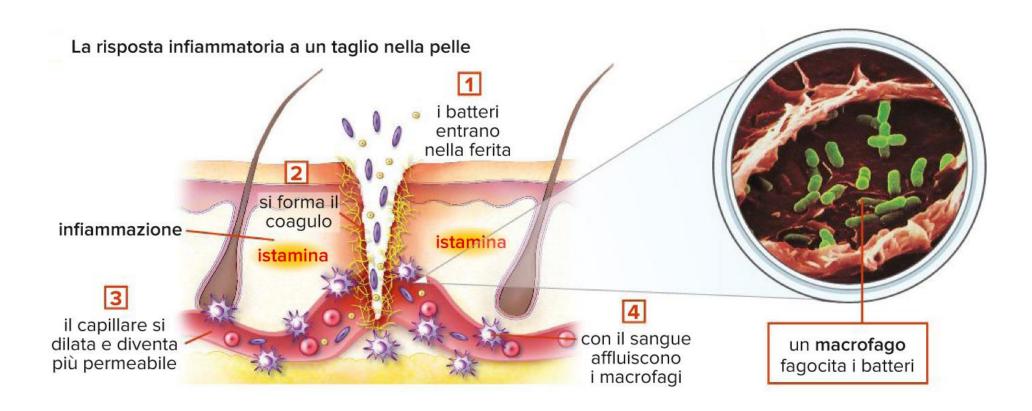
Il nostro corpo usa diverse barriere come difesa contro l'ingresso dei germi patogeni.

La prima barriera di difesa aspecifica è la pelle, che per funzionare deve essere perfettamente integra, senza tagli né lesioni.

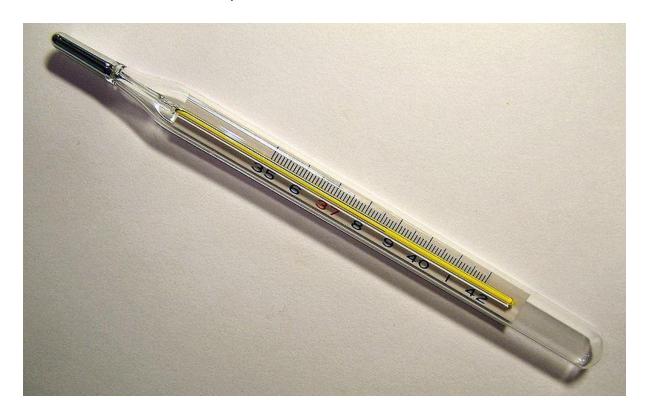
Quando i germi superano le difese di barriera ed entrano nel nostro corpo, entra in azione il sistema immunitario.



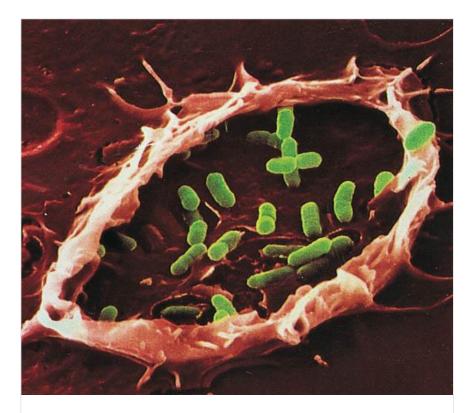
La risposta immunitaria coinvolge l'apparato circolatorio e il sistema linfatico, che agiscono in due modi:


- con meccanismi aspecifici, che inglobano e distruggono qualsiasi invasore;
- con meccanismi specifici, che si indirizzano contro un tipo particolare di germe patogeno.

Le principali difese immunitarie aspecifiche: le infiammazioni e la febbre.


La risposta infiammatoria a un taglio nella pelle

Le principali difese immunitarie aspecifiche: le infiammazioni e la febbre.



Le principali difese immunitarie aspecifiche: le infiammazioni e la febbre.

La **febbre** è una **difesa aspecifica** che fa **aumentare la temperatura del corpo**: così l'organismo uccide i germi che non sopportano temperature superiori a 37 °C.

Un esempio di difesa immunitaria specifica è costituito dai linfociti.

Un macrofago mentre fagocita batteri.

I linfociti sono i globuli bianchi incaricati della risposta immunitaria:

- linfociti B, prodotti nel midollo osseo
- **linfociti T**, prodotti nel **timo**.

I linfociti identificano i germi estranei e li segnalano ai **macrofagi**, altri globuli bianchi che a quel punto:

- attraversano le pareti dei capillari
- raggiungono i germi
- li circondano con gli pseudopodi
- e infine li fagocitano.

Le malattie possono essere a trasmissione diretta oppure indiretta.

Alcune malattie infettive si possono trasmettere anche con uno starnuto.

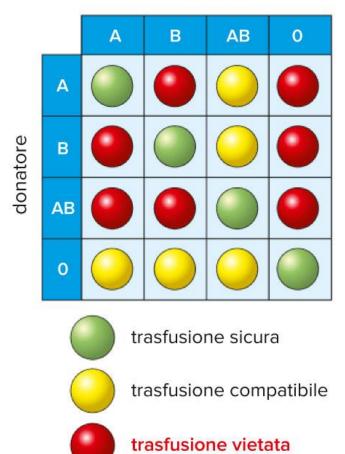
Nelle malattie a trasmissione diretta si ha un'infezione quando:

- una barriera aspecifica subisce una lesione
- i microrganismi penetrano nell'organismo
- i germi invadono le cellule e si moltiplicano

Si può avere **contagio** se si viene a contatto con la **saliva**, il **sangue**, l'**urina** o le **feci** di una **persona infetta**.

Le malattie possono essere a trasmissione diretta oppure indiretta.

Le malattie a trasmissione indiretta sono dovute invece al contatto con acqua, terreno, alimenti o animali contaminati dai microrganismi.

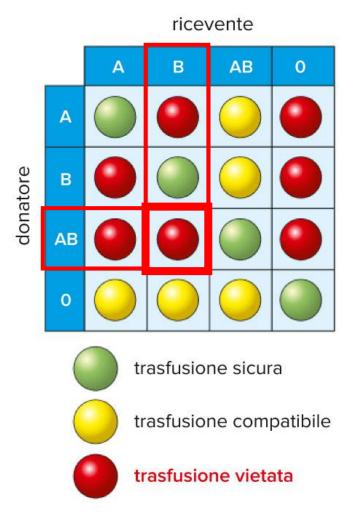

I frutti di mare non vanno mai mangiati crudi: bisogna cuocerli, così da uccidere i batteri. Spesso i sintomi appaiono soltanto dopo un **periodo d'incubazione**, durante il quale i microrganismi si moltiplicano e producono tossine.

2. Il sistema immunitario – difese immunitarie e gruppi sanguigni Ognuno di noi appartiene a uno dei quattro gruppi sanguigni: A, B, AB o 0.

gruppo sanguigno	antigeni presenti sulla membrana dei globuli rossi	anticorpi presenti nel plasma sanguigno	
А	Α 🗼	anti-B 🎌	
В	В	anti-A 🐈	
AB	A e B	né anti-A né anti-B	
0 (zero)	né A né B 🥯	anti-A e anti-B 🎌 🎌	

2. Il sistema immunitario – difese immunitarie e gruppi sanguigni Ognuno di noi appartiene a uno dei quattro gruppi sanguigni: A, B, AB o 0.

ricevente

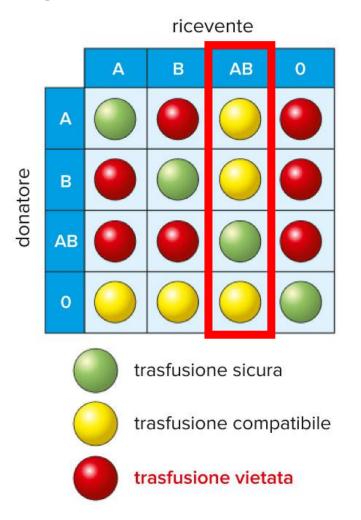


Prima di ogni **trasfusione di sangue** bisogna conoscere i **gruppi sanguigni** del **ricevente** e del **donatore**.

Occorre infatti evitare che gli **anticorpi** dell'uno attacchino gli **antigeni** presenti sui globuli rossi dell'altro.

Se non c'è **compatibilità** tra i due gruppi, nel sangue del ricevente si formeranno **coaguli** che possono ostruire i vasi sanguigni (**reazione di agglutinazione**).

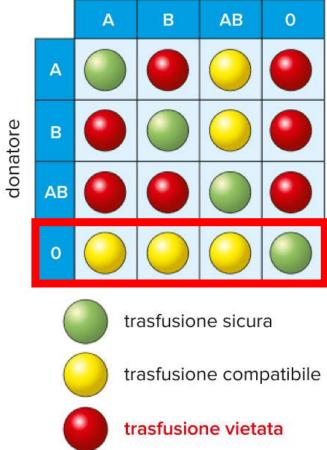
Ognuno di noi appartiene a uno dei quattro gruppi sanguigni: A, B, AB o 0.



Per esempio, un donatore AB **non può** dare il sangue a un ricevente di gruppo B.

Infatti il sangue del ricevente contiene anticorpi anti-A, che attaccherebbero gli antigeni A presenti nel sangue donato.

La trasfusione perciò è vietata.

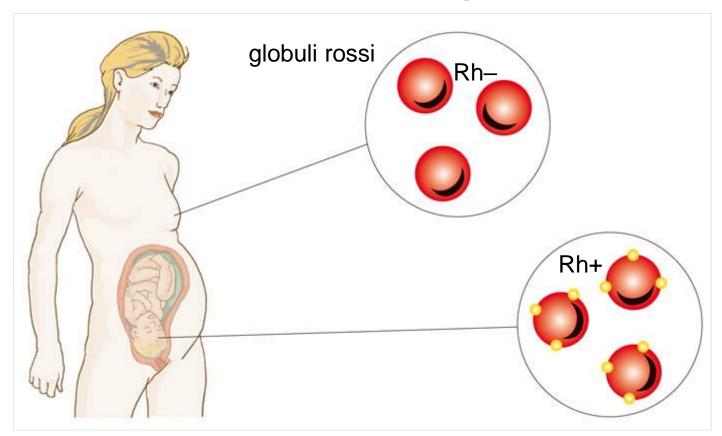

Ognuno di noi appartiene a uno dei quattro gruppi sanguigni: A, B, AB o 0.

Le persone del gruppo AB sono riceventi universali. Il loro sangue non contiene anticorpi anti-A né anti-B, perciò non attaccherà i globuli rossi del donatore.

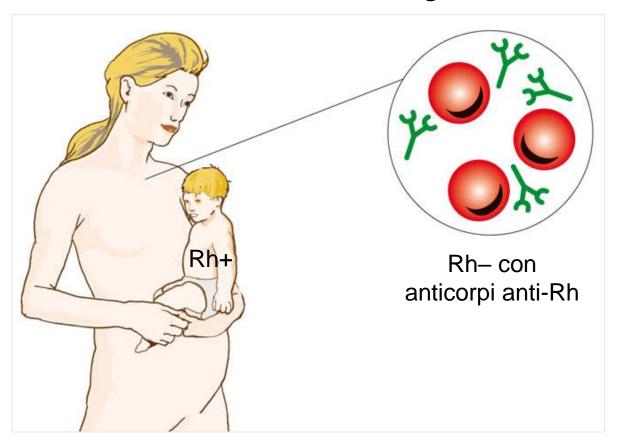
Ognuno di noi appartiene a uno dei quattro gruppi sanguigni: A, B, AB o 0.

ricevente

Le persone del gruppo 0 sono donatori universali.
I loro globuli rossi non hanno gli antigeni A e B, perciò non saranno attaccati dagli anticorpi del ricevente.


Sui globuli rossi esiste anche un altro antigene, chiamato fattore Rh.

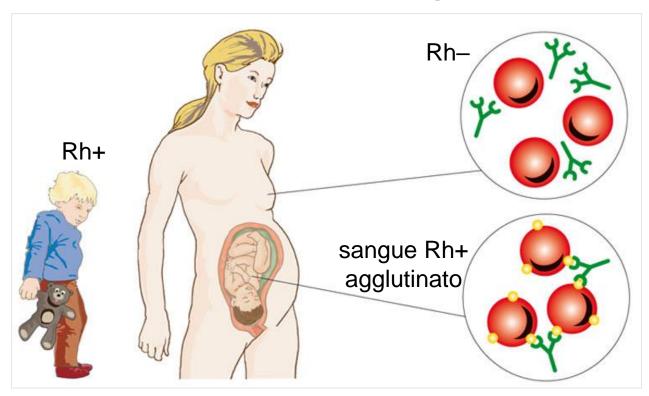
- chi ha globuli rossi con questo antigene è Rh-positivo (Rh+)
- chi non ha questo antigene
 è Rh-negativo (Rh-)


Non si può dare il sangue di un donatore Rh+ a un ricevente Rh-: se lo si facesse, si avrebbe una reazione di agglutinazione.

Che cosa succede se una donna Rh- ha un figlio Rh+?

Nel corso di questa gravidanza la situazione non crea alcun problema.

Che cosa succede se una donna Rh- ha un figlio Rh+?


Durante il **parto**, però, il sangue materno viene a contatto con quello del bimbo. Per **risposta immunitaria**, il sangue della madre produrrà **anticorpi anti-Rh**.

Che cosa succede se una donna Rh- ha un figlio Rh+?

La nuova situazione è rischiosa in caso di **un'altra** gravidanza con un **feto Rh+**: gli anticorpi materni infatti faranno agglutinare i globuli rossi del secondo figlio.

Che cosa succede se una donna Rh- ha un figlio Rh+?

Per scongiurare il rischio, alla madre si somministra un farmaco che blocca la sua risposta immunitaria, impedendo che si formino gli anticorpi anti-Rh.

Si ha immunità attiva quando il sistema immunitario produce anticorpi.

La **vaccinazione** espone l'organismo a una dose non pericolosa di patogeni, per stimolare una risposta immunitaria.

L'immunità attiva può essere:

- naturale, quando nel corpo si scatena una risposta immunitaria in seguito al contatto casuale con un germe patogeno;
- artificiale, quando
 l'organismo produce
 anticorpi in seguito alla
 somministrazione di vaccini.

Si ha immunità passiva quando riceviamo anticorpi da un altro organismo.

L'immunità passiva può essere:

- naturale, come quando il feto riceve anticorpi dalla madre attraverso la placenta (e poi il neonato dal latte materno);
- artificiale, quando a infezione già in corso si inietta un siero con anticorpi già pronti ad agire contro le tossine.

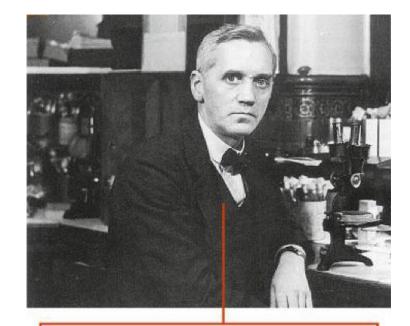
A chi è morsicato da una vipera si deve iniettare un apposito siero per neutralizzare il veleno: è un esempio di immunità passiva artificiale.

Come si riconosce una vipera:

- ha il corpo tozzo e la coda tozza e tronca;
- la testa ha una forma quasi triangolare ed è ben distinta dal corpo;
- la pupilla è una fessura verticale;
- di solito si muove piuttosto lentamente.

3. Contrastare microrganismi e malattie

I microrganismi per lo più sono innocui, ma alcuni sono patogeni, cioè possono infettare il nostro organismo provocando malattie.


Una buona igiene quotidiana è la migliore prevenzione contro i patogeni.

3. Contrastare microrganismi e malattie

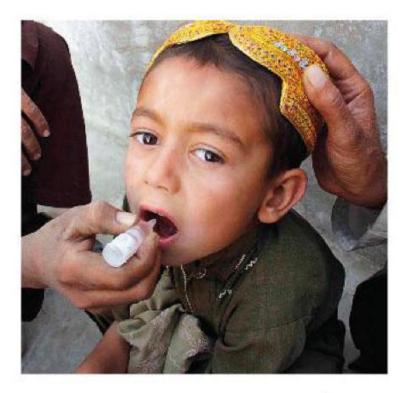
Gli antibiotici sono potenti medicine contro le infezioni batteriche.

Certi tipi di **funghi microscopici** producono gli **antibiotici**, sostanze che attaccano e distruggono la membrana di determinati batteri, uccidendoli.

Alexander Fleming (1881-1955) e, a fianco, una delle sue colture Il primo antibiotico, la **penicillina**, è stato scoperto nel 1928 da **Alexander Fleming** nella muffa della frutta.

3. Contrastare microrganismi e malattie

Gli antibiotici sono potenti medicine contro le infezioni batteriche.


Quando si prendono gli antibiotici bisogna sempre proseguire la cura fino alla fine della prescrizione!

Altrimenti i **batteri più resistenti** al farmaco sopravvivranno e si diffonderanno pericolosamente.

Approfondimento sulla farmaco resistenza

Molte malattie virali e batteriche si possono prevenire con le vaccinazioni.

Una semplice vaccinazione può salvare la vita.

Con la vaccinazione si introduce nel corpo una piccola e innocua quantità dell'agente patogeno; così il nostro sistema immunitario in futuro lo riconoscerà subito e ci proteggerà in modo molto più efficace.

Esistono varie tipologie di vaccino:

- vaccini vivi attenuati (come per morbillo, rosolia, parotite, varicella, febbre gialla e tubercolosi);
- vaccini inattivati (come per l'epatite A, la poliomielite e l'antinfluenzale split);
- vaccini ad antigeni purificati (come per la pertosse acellulare, l'antimeningococco e l'antinfluenzale a sub-unità);
- vaccini ad anatossine (come per tetano e difterite);
- vaccini proteici ricombinanti (come per epatite B e meningococco B).

Molte malattie virali e batteriche si possono prevenire con le vaccinazioni.

La poliomielite è una malattia virale causata da un virus che attacca il sistema nervoso, lasciando la persona parzialmente o totalmente paralizzata.

Colpì la popolazione mondiale nella prima metà del '900. Per ridurre la trasmissione si utilizzarono misure di distanziamento sociale.

Molte malattie virali e batteriche si possono prevenire con le vaccinazioni.

Tabella 1. Tassi di mortalità e stima dei morti evitati dalla vaccinazione

Malattie prevenibili da vaccino	Periodo di valutazione pre- vaccinazione	Periodo di valutazione post- vaccinazione	Tassi di mortalità pre- vaccinazione (per 100.000 ab.)	Tassi di mortalità post- vaccinazione (per 100.000 ab.)	Numero di morti evitati (I.C. 95%)
Difterite	1900-1938	1939-2012	53,03	11,42	27.503 (17.883- 39.292)
Tetano	1900-1962	1963-2012	1,45	0,39	34.946 (25.499- 47.268)
Poliomielite	1929-1963	1964-2012	5,23	0,06	10.799 (9566- 12.181)

Fonte dei dati e approfondimento (in italiano)